Dolphin skin as a natural anisotropic compliant wall.

نویسنده

  • V V Pavlov
چکیده

Although the success of compliant walls in mimicking dolphin skin is well known, the drag-reducing properties of a dolphin's skin are still unclear. Moreover, little is known about the relation between the 3D structure of the skin and the local flow conditions. To study the role of a dolphin's skin in reducing the drag the skin morphology parameters were compared with the parameters of an anisotropic compliant wall and a possible flow-skin interface was considered. The 3D structure of skin from different locations was modelled using serial histological sections of the skin. The hydrodynamics of the dorsal fin of the harbour porpoise was studied by means of computer simulation of the flow around virtual models of the fin. It was found that the distribution of the skin morphology parameters is correlated with the local flow parameters on the fin surface. The skin structure appears to allow the flow-skin interface to behave similar to an anisotropic compliant wall in the regions of favourable and adverse pressure gradients on the fin. The relation founded between the skin morphology and the local flow parameters could be useful in the design of multipanel anisotropic compliant walls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Laminar-Turbulent Transition on a Dolphin Using the γ-Reθ Model

The γ-Reθ-model, a two equation, correlation-based transition model using local variables, has been employed to predict the extension of the laminar regions on a stiff geometry of the common dolphin (delphinus delphis) moving in the Reynolds regime of 5.5 ·10 to 10. Mesh independence was gained for a domain resolution of approximately 30 million cells in an unstructured polyhedral mesh with a p...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms

Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinspiration & biomimetics

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2006